TY - JOUR
T1 - Uncovering ‘Hidden’ Signals
T2 - Previously Presumed Visual Signals Likely Generate Air Particle Movement
AU - Kundu, Pallabi
AU - Choi, Noori
AU - Rundus, Aaron
AU - Santer, Roger
AU - Hebets, Eileen A.
N1 - Funding Information:
We acknowledge Madison Hays, Drs. Rowan McGinley, Guilherme Oyarzabal da Silva, Gail Stratton, and Pat Miller for their help with collecting the spiders. We thank Dr. Gail Stratton and Pat Miller for food and lodging during collecting trips. We thank members of the Hebets, Basolo, Wagner, and Shizuka laboratories for their feedback on the experiments. We thank Dr. Rowan McGinley for . We thank our funding sources NSF (IOS—1556153, IOS—1037901, IOS—1456817), the Searle Scholars Program and UNL QLSI Summer Graduate Student Fund. We thank Cedar Point Biological Station for food, lodging and a place to run Experiment 2. Finally, we also thank the editors of this special issue for the invitation to contribute and we are especially grateful to two reviewers that provided incredibly thoughtful and helpful comments that strengthened this manuscript greatly.
Publisher Copyright:
Copyright © 2022 Kundu, Choi, Rundus, Santer and Hebets.
PY - 2022/7/5
Y1 - 2022/7/5
N2 - Wolf spiders within the genus Schizocosa have become a model system for exploring the form and function of multimodal communication. In terms of male signaling, much past research has focused on the role and importance of dynamic and static visual and substrate-borne vibratory communication. Studies on S. retrorsa, however, have found that female-male pairs were able to successfully mate in the absence of both visual and vibratory stimuli, suggesting a reduced or non-existent role of these signaling modalities in this species. Given these prior findings, it has been suggested that S. retrorsa males may utilize an additional signaling modality during courtship—air particle movement, often referred to as near-field sound—which they likely produce with rapid leg waving and receive using thin filiform sensory hairs called trichobothria. In this study, we tested the role of air-particle movement in mating success by conducting two independent sets of mating trials with randomly paired S. retrorsa females and males in the dark and on granite (i.e., without visual or vibratory signals) in two different signaling environments—(i) without (“No Noise”) and (ii) with (“Noise”) introduced air-particle movement intended to disrupt signaling in that modality. We also ran foraging trials in No Noise/Noise environments to explore the impact of our treatments on overall behavior. Across both mating experiments, our treatments significantly impacted mating success, with more mating in the No Noise signaling environments compared to the Noise environments. The rate of leg waving—a previously assumed visual dynamic movement that has also been shown to be able to produce air particle displacement—was higher in the No Noise than Noise environments. Across both treatments, males with higher rates of leg waving had higher mating success. In contrast to mating trials results, foraging success was not influenced by Noise. Our results indicate that artificially induced air particle movement disrupts successful mating and alters male courtship signaling but does not interfere with a female’s ability to receive and assess the rate of male leg waving.
AB - Wolf spiders within the genus Schizocosa have become a model system for exploring the form and function of multimodal communication. In terms of male signaling, much past research has focused on the role and importance of dynamic and static visual and substrate-borne vibratory communication. Studies on S. retrorsa, however, have found that female-male pairs were able to successfully mate in the absence of both visual and vibratory stimuli, suggesting a reduced or non-existent role of these signaling modalities in this species. Given these prior findings, it has been suggested that S. retrorsa males may utilize an additional signaling modality during courtship—air particle movement, often referred to as near-field sound—which they likely produce with rapid leg waving and receive using thin filiform sensory hairs called trichobothria. In this study, we tested the role of air-particle movement in mating success by conducting two independent sets of mating trials with randomly paired S. retrorsa females and males in the dark and on granite (i.e., without visual or vibratory signals) in two different signaling environments—(i) without (“No Noise”) and (ii) with (“Noise”) introduced air-particle movement intended to disrupt signaling in that modality. We also ran foraging trials in No Noise/Noise environments to explore the impact of our treatments on overall behavior. Across both mating experiments, our treatments significantly impacted mating success, with more mating in the No Noise signaling environments compared to the Noise environments. The rate of leg waving—a previously assumed visual dynamic movement that has also been shown to be able to produce air particle displacement—was higher in the No Noise than Noise environments. Across both treatments, males with higher rates of leg waving had higher mating success. In contrast to mating trials results, foraging success was not influenced by Noise. Our results indicate that artificially induced air particle movement disrupts successful mating and alters male courtship signaling but does not interfere with a female’s ability to receive and assess the rate of male leg waving.
KW - behavioral plasticity
KW - environmental noise
KW - mating success
KW - multimodal signaling
KW - near-field sound
KW - Schizocosa retrorsa
KW - signaling environment
KW - wolf spider
UR - http://www.scopus.com/inward/record.url?scp=85135058340&partnerID=8YFLogxK
U2 - 10.3389/fevo.2022.939133
DO - 10.3389/fevo.2022.939133
M3 - Article
AN - SCOPUS:85135058340
SN - 2296-701X
VL - 10
JO - Frontiers in Ecology and Evolution
JF - Frontiers in Ecology and Evolution
M1 - 939133
ER -