Fathers’ preconception smoking and offspring DNA methylation

Negusse Tadesse Kitaba, Gerd Toril Mørkve Knudsen, Ane Johannessen, Faisal I. Rezwan, Andrei Malinovschi, Anna Oudin, Bryndis Benediktsdottir, David Martino, Francisco Javier Callejas González, Leopoldo Palacios Gómez, Mathias Holm, Nils Oskar Jõgi, Shyamali C. Dharmage, Svein Magne Skulstad, Sarah H. Watkins, Matthew Suderman, Francisco Gómez-Real, Vivi Schlünssen, Cecilie Svanes, John W. Holloway

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)
56 Downloads (Pure)

Abstract

BACKGROUND: Experimental studies suggest that exposures may impact respiratory health across generations via epigenetic changes transmitted specifically through male germ cells. Studies in humans are, however, limited. We aim to identify epigenetic marks in offspring associated with father's preconception smoking.

METHODS: We conducted epigenome-wide association studies (EWAS) in the RHINESSA cohort (7-50 years) on father's any preconception smoking (n = 875 offspring) and father's pubertal onset smoking < 15 years (n = 304), using Infinium MethylationEPIC Beadchip arrays, adjusting for offspring age, own smoking and maternal smoking. EWAS of maternal and offspring personal smoking were performed for comparison. Father's smoking-associated dmCpGs were checked in subpopulations of offspring who reported no personal smoking and no maternal smoking exposure.

RESULTS: Father's smoking commencing preconception was associated with methylation of blood DNA in offspring at two cytosine-phosphate-guanine sites (CpGs) (false discovery rate (FDR) < 0.05) in PRR5 and CENPP. Father's pubertal onset smoking was associated with 19 CpGs (FDR < 0.05) mapped to 14 genes (TLR9, DNTT, FAM53B, NCAPG2, PSTPIP2, MBIP, C2orf39, NTRK2, DNAJC14, CDO1, PRAP1, TPCN1, IRS1 and CSF1R). These differentially methylated sites were hypermethylated and associated with promoter regions capable of gene silencing. Some of these sites were associated with offspring outcomes in this cohort including ever-asthma (NTRK2), ever-wheezing (DNAJC14, TPCN1), weight (FAM53B, NTRK2) and BMI (FAM53B, NTRK2) (p < 0.05). Pathway analysis showed enrichment for gene ontology pathways including regulation of gene expression, inflammation and innate immune responses. Father's smoking-associated sites did not overlap with dmCpGs identified in EWAS of personal and maternal smoking (FDR < 0.05), and all sites remained significant (p < 0.05) in analyses of offspring with no personal smoking and no maternal smoking exposure.

CONCLUSION: Father's preconception smoking, particularly in puberty, is associated with offspring DNA methylation, providing evidence that epigenetic mechanisms may underlie epidemiological observations that pubertal paternal smoking increases risk of offspring asthma, low lung function and obesity.

Original languageEnglish
Article number131
Number of pages16
JournalClinical epigenetics
Volume15
Issue number1
Early online date31 Aug 2023
DOIs
Publication statusPublished - 01 Dec 2023

Keywords

  • Paternal effects
  • Epigenome-wide association study
  • Epigenetic
  • Tobacco smoke
  • Preconception
  • RHINESSA
  • DNA methylation
  • Epigenesis, Genetic
  • Humans
  • Chromosomal Proteins, Non-Histone
  • Male
  • Smoking/adverse effects
  • Guanine
  • Asthma
  • DNA Methylation
  • Cytosine
  • Tobacco Smoking

Fingerprint

Dive into the research topics of 'Fathers’ preconception smoking and offspring DNA methylation'. Together they form a unique fingerprint.

Cite this