TY - UNPB
T1 - Exceptional retreat of Novaya Zemlya's marine-terminating outlet glaciers between 2000 and 2013
AU - Carr, Rachel
AU - Bell, Heather
AU - Killick, Rebecca
AU - Holt, Thomas
PY - 2017/9/8
Y1 - 2017/9/8
N2 - Novaya Zemlya (NVZ) has experienced rapid ice loss and accelerated marine-terminating glacier retreat during the past two decades. However, it is unknown whether this retreat is exceptional longer-term and/or whether it has persisted since 2010. Investigating this is vital, as dynamic thinning may contribute substantially to ice loss from NVZ, but is not currently included in sea level rise predictions. Here, we use remotely sensed data to assess controls on NVZ glacier retreat between the 1973/6 and 2015. Glaciers that terminate into lakes or the ocean receded 3.5 times faster than those that terminate on land. Between 2000 and 2013, retreat rates were significantly higher on marine-terminating outlet glaciers than during the previous 27 years, and we observe widespread slow-down in retreat, and even advance, between 2013 and 2015. There were some common patterns in the timing of glacier retreat, but the magnitude varied between individual glaciers. Rapid retreat between 2000–2013 corresponds to a period of significantly warmer air temperatures and reduced sea ice concentrations, and to changes in the NAO and AMO. We need to assess the impact of this accelerated retreat on dynamic ice losses from NVZ, to accurately quantify its future sea level rise contribution.
AB - Novaya Zemlya (NVZ) has experienced rapid ice loss and accelerated marine-terminating glacier retreat during the past two decades. However, it is unknown whether this retreat is exceptional longer-term and/or whether it has persisted since 2010. Investigating this is vital, as dynamic thinning may contribute substantially to ice loss from NVZ, but is not currently included in sea level rise predictions. Here, we use remotely sensed data to assess controls on NVZ glacier retreat between the 1973/6 and 2015. Glaciers that terminate into lakes or the ocean receded 3.5 times faster than those that terminate on land. Between 2000 and 2013, retreat rates were significantly higher on marine-terminating outlet glaciers than during the previous 27 years, and we observe widespread slow-down in retreat, and even advance, between 2013 and 2015. There were some common patterns in the timing of glacier retreat, but the magnitude varied between individual glaciers. Rapid retreat between 2000–2013 corresponds to a period of significantly warmer air temperatures and reduced sea ice concentrations, and to changes in the NAO and AMO. We need to assess the impact of this accelerated retreat on dynamic ice losses from NVZ, to accurately quantify its future sea level rise contribution.
M3 - Working paper
VL - 11
T3 - Cryosphere Discussions
SP - 2149
EP - 2174
BT - Exceptional retreat of Novaya Zemlya's marine-terminating outlet glaciers between 2000 and 2013
ER -