Runtime analysis of a population-based evolutionary algorithm with auxiliary objectives selected by reinforcement learning

Denis Antipov, Arina Buzdalova, Andrey Stankevich

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddTrafodion Cynhadledd (Nid-Cyfnodolyn fathau)

Crynodeb

We propose the method of selection of auxiliary objectives (2 + 2λ)-EA+RL which is the population-based modification of the EA+RL method. We analyse the efficiency of this method on the problem XdivK that is considered to be a hard problem for random search heuristics due to multiple plateaus. We prove that in the case of presence of a helping auxiliary objective this method can find the optimum in 0(n2) fitness evaluations in expectation, while the initial EA+RL, which is not population-based, yields at least Ω (nk−1) fitness evaluations, where k is the plateau size. We also prove that in the case of presence of an obstructive auxiliary objective the expected runtime increases only by a constant factor.
Iaith wreiddiolSaesneg
TeitlGECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion
GolygyddionHernan Aguirre
CyhoeddwrAssociation for Computing Machinery
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 2018
DigwyddiadGECCO 2018: The Genetic and Evolutionary Computation Conference - Kyoto, Siapan
Hyd: 15 Gorff 201819 Gorff 2018
http://gecco-2018.sigevo.org

Cynhadledd

CynhadleddGECCO 2018: The Genetic and Evolutionary Computation Conference
Gwlad/TiriogaethSiapan
DinasKyoto
Cyfnod15 Gorff 201819 Gorff 2018
Cyfeiriad rhyngrwyd

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Runtime analysis of a population-based evolutionary algorithm with auxiliary objectives selected by reinforcement learning'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn